(4x^2-3x)=(2x+x^2-1)

Simple and best practice solution for (4x^2-3x)=(2x+x^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (4x^2-3x)=(2x+x^2-1) equation:



(4x^2-3x)=(2x+x^2-1)
We move all terms to the left:
(4x^2-3x)-((2x+x^2-1))=0
We get rid of parentheses
-((2x+x^2-1))+4x^2-3x=0
We calculate terms in parentheses: -((2x+x^2-1)), so:
(2x+x^2-1)
We get rid of parentheses
x^2+2x-1
Back to the equation:
-(x^2+2x-1)
We add all the numbers together, and all the variables
4x^2-3x-(x^2+2x-1)=0
We get rid of parentheses
4x^2-x^2-3x-2x+1=0
We add all the numbers together, and all the variables
3x^2-5x+1=0
a = 3; b = -5; c = +1;
Δ = b2-4ac
Δ = -52-4·3·1
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{13}}{2*3}=\frac{5-\sqrt{13}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{13}}{2*3}=\frac{5+\sqrt{13}}{6} $

See similar equations:

| -7=12x-16 | | 28.5+8.75w=104.75+6.5w | | 28.5+8.75w=104.75+6.5 | | 51=x/6 | | x/25=54.5/85 | | 2x+3x=7x-2 | | 1/2(8x-16)+2=-14 | | 2x=4x+9+2x | | n/10=3/2 | | 3.666(12-a)=43000 | | ∣a−10∣=  33 | | 4y2+7y+3=0 | | -2(-2/3-12/3y)+5y=10 | | n10=32 | | x=2-4x+3x+3+2x | | 32/3(12-a)=43000 | | 3x/4x=140 | | 4x-4x=2x+2x | | -14c=19 | | 255x1/3=x | | 10+x/3=-3 | | 6p+p+3p−5p=15 | | E(h)=25h | | 54-9x-49=26-7x-21 | | 2x^2+30=230 | | 3.66(12-a)=43000 | | x+31.9=84.8 | | 3.667(12-a)=43000 | | 0.04(y-3)+0.08y=0.02y-0.3 | | 23=m+14 | | 37=12-z | | r+40.09=84.96 |

Equations solver categories